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Abstract. 
A train of small-amplitude surface waves is obliquely incident on a fixed, thin, vertical plate submerged in deep 
water. The plate is infinitely long in the horizontal direction. An appropriate one-term Galerldn approximation is 
employed to calculate very accurate upper and lower bounds for the reflection and transmission coefficients for 
any angle of incidence and any wave number thereby producing very accurate numerical results. 

1. Introduction 

Mathematical study of water wave diffraction problems involving fixed vertical thin barriers 
within the framework of linearised theory of water waves was initiated long ago, using a 
variety of mathematical methods. For example, Dean [1] used the complex variable technique 
to study the reflection of a normally incident wave train by a fixed, thin, vertical barrier 
submerged in deep water; Ursell [2] used an integral equation procedure based on Havelock's 
[3] expansion of two-dimensional water wave potential to solve the complementary problem of 
a partially immersed barrier and obtained the closed form expressions for the velocity potential 
as well as the reflection and transmission coefficients. He also stated the results of the problem 
considered in [1]. Levine and Rodemich [4] used another integral equation procedure based 
on a suitable use of Green's integral theorem and Williams [5] used a reduction procedure 
to reinvestigate Ursell's [2] problem. Goswami [6] used an integral equation approach for 
the submerged barrier problem of Dean [1]. Also, Mandal and Kundu [7,8] demonstrated a 
number of mathematical methods in solving this problem. Again, Evans [9] earlier considered 
the problem of normal incidence on a thin plate submerged in deep water by using complex 
variable theory in conjunction with a Riemann-Hilbert boundary value problem and obtained 
the solution in closed form. 

It should be noted that closed form solutions of the diffraction problems involving the 
aforesaid three configurations of the barrier only exist for the normal incidence of the wave 
train and deep water case, in the sense that the velocity potential as well as the reflection and 
transmission coefficients can be obtained exactly. However, for oblique incidence of the wave 
train, these problems cannot be solved in closed form, although the reflection and transmission 
coefficients can be obtained approximately. For example, Faulkner [10,11] used the Wiener- 
Hopf technique to study oblique water wave diffraction by a submerged plane vertical barrier 
as well as by a partially immersed vertical barrier and obtained the reflection coefficient in 
each case for large wave number. Jarvis and Taylor [12] pointed out an error of formulation in 
[ 11 ] involving the submerged barrier, which they corrected, thus obtaining asymptotically the 
reflection coefficient for large wave number by analysing an integral equation of the second 
kind with Cauchy kernel, to which the problem was reduced. The mathematical analysis in [ 10- 
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12] appears to be rather cumbersome. Later, Evans and Morris [3] utilized an approximate 
method involving the use of a one-term Galerkin approximation to the solutions of two 
appropriate integral equations to obtain very accurate upper and lower bounds for the reflection 
and transmission coefficients for all angles of incidence and wave numbers for the problem 
of oblique water wave diffraction by a fixed vertical barrier partially immersed in deep water. 
They also considered the complementary problem of a submerged barrier extending infinitely 
downwards by the same method, but did not present the results. Mandal and Goswami [14-16] 
utilized integral equation formulations for these problems based on appropriate use of Green's 
integral theorem and obtained the reflection and transmission coefficients approximately after 
solving the integral equations, also approximately, by a perturbation technique. In each case 
they presented graphical results for these coefficients for various values of the wave number 
and angle of incidence upto 15 °. However, for an angle of incidence greater than 15 ° it 
is obvious that more terms were needed in the approximate series solutions of the integral 
equations concerned, and this somewhat restricts the use of this method as the analytical 
calculations are rather long and tedious. 

Recently Mandal and Dolai [17] used the idea of Evans and Morris [ 13] to obtain very accu- 
rate lower and upper bounds for the reflection and transmission coefficients in the problems 
of water wave diffraction by four different structures involving a plane vertical barrier present 
in water of uniform finite depth. These structures consist of an immersed plate, a submerged 
plate extending down to the bottom, a barrier with a submerged gap and a submerged plate 
which does not extend to the bottom. 

The problem of oblique water wave diffraction by a plate submerged in deep water con- 
sidered in [16] is reinvestigated in this paper by using the method utilized in [13] for the 
problem of a partially immersed vertical barrier. The reflection and transmission coefficients 
are obtained in terms of integrals involving the unknown horizontal component of velocity 
across the gaps above and below the plate, and the difference of velocity potential across the 
plate. These unknown functions satisfy certain integral equations. The known exact solutions 
for normally incident waves are utilized as a one-term Galerkin approximation to the solu- 
tions of the appropriate integral equations to obtain very accurate upper and lower (numerical) 
bounds for the reflection and transmission coefficients for all angles of incidence and wave 
numbers. This method of obtaining very accurate upper and lower bounds to produce very 
accurate numerical results, appears to be simple in comparison to the method used in [16] for 
this problem. The reflection coefficient is depicted graphically for various values of the wave 
number and the angle of incidence. 

2. Formulation of the problem 

A train of progressive waves represented by the velocity potential 

Co(x, y, z, t) = Re{exp( -Ky + i#x  + iuz  - iat)}  

where # = K cos a, u = K sin a, K = a2/g, g is the acceleration due to gravity, a is the 
circular frequency. The wave train is assumed to be obliquely incident on a thin vertical plate 
occupying the position x = 0, V E S and - c ~  < z < cx~, where S = (a, b), at an angle c~ 
to the normal of the plate from negative infinity. A sketch of the geometry of the problem is 
depicted in Figure 1. 
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Fig. 1. Sketch of the problem. 

Here the y-axis is taken vertically downwards through the plate and the xz-plane is taken 
as the position of the mean free surface. The geometry of the problem allows the z-dependence 
to be eliminated by assuming the velocity potential in the form 

¢(x ,y , z , t )  = Re{C(x,y)exp(ivz - iat)} 

throughout, where ¢(x, y) satisfies the boundary value problem described by 

(V2 _ /]2)¢ = 0 for y > 0, (2.1) 

K ¢ + ¢ y = 0  on y = 0 ,  (2.2) 

C z = 0 ,  x = 0 ,  y E S ,  (2.3) 

r l /2V¢ is bounded as r ~ 0 (2.4) 

where r is the distance from a submerged end of the plate, 

V ¢ ~ 0  as y ~  (2.5) 

and 

T e x p ( - K y  +i#x) as x ~ (x~, 
¢ ( x , y ) =  e x p ( - K y + i # x ) + R e x p ( - K y - i # x )  as x - - + - c ~  (2.6) 

where R and T are the (complex) reflection and transmission coefficients, respectively, and 
are to be obtained. 
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3. Method of solution 

A solution for ¢(x, y) satisfying (2.1), (2.2), (2.5) and (2.6) can be represented as 

T e x p ( - K y  + i#x) + £ A ( k ) L ( k , y ) e x p ( - k l x ) d k  for X > 0 ,  

¢(x, y) = e x p ( - K y  + i#x) + R e x p ( - K y  + i#x)+ (3.1) 

o~B(k )L (k , y ) exp (k l x )dk  for x < 0  

where kl = (k 2 + ~,2)1/2 with kl = k when u = 0 and L(k,y) = kcosky  - Ks inky .  
Let 

f ( y ) = ¢ z ( O , y ) ,  O < y < c ~  (3.2) 

and 

g(y) = ¢(+O,y)  - ¢ ( -O,y) ,  0 < y < c~, (3.3) 

then 

f ( y ) = O  for y E S  (3.4) 

and 

9(y )=O for y E ~ ' = ( 0 ,  c ~ ) - S  (3.5) 

The constants T, R and the functions A(k), B(k) can be represented in terms of f (y)  and 
9(Y). This is done as follows. 

Since Cx is continuous across x = 0, we obtain from (3.1) and (3.2) that 

f (y )  = Cx(+0, y) = i # T e x p ( - K y )  - k lA(k)L(k ,y )dk  

= i#(1 - R ) e x p ( - K y )  + k lB(k)L(k ,y )dk ,  y > 0. (3.6) 

Utilizing Havelock's [3] inversion theorem and noting (3.4), we find from (3.6) that 

= l - R = ___2iK [_ f (y)  e x p ( - g y )  dy, T (3.7a) 
# Js 

2 1 r 
A(k) = - B ( k )  = 71- ~:1 ( k2 "t'- K2  ) ]~ f (y)L(k ,  y) dy. (3.7b) 

Again, using (3.1) in (3.3) we find 

g(Y) = (T - R - 1) e x p ( - K y )  + {A(k) - B(k)}L(k,  y) dk. (3.8) 

Again, by utilizing Havelock's [3] inversion and noting (3.5), (3.7), we obtain from (3.8) 
that 

R = - K  f g(Y) e x p ( - K y )  dy, (3.9a) 
./s 
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_ 1 1 Is A(k) 7r k 2 + K 2 g(y)L(k, y) dy. (3.9b) 

Use of the condition (2.3) in the form 

lim Cz(x,y) = O, y E S 
x---r i0  

along with (3. l) and (3.9b) produces an integral equation for g(y) as 

lira f g(u)M(y,u;e)du = 7ri#(1 - R)exp(-gy) for y e S (3.10) 
e~O Js 

where 

= fo 
kl L( k, y)L( k, u) exp(-ekl ) 

k2 + K2 dk (3.11) 

so that M(y, u; e) is symmetric in y and u. 
Again, as ¢(x, y) is continuous across the gaps, use of (3.1) along with (3.7b) produces an 

integral equation for f(y) as 

f(u)N(y,u)du = --~rrRexp(-Ky) for y E o 0 (3.12) 

where 

fo ~ L(k,y)L(k,u) N(y,u) = kl(k  2 + K2 ) dk (3.13) 

so that N(y, u) is symmetric in y and u .  

If we let 

F(y) - 2i~f(y ) for y E S, (3.14) 

1 
G(y) - 7ri#(1 - R) g(y) for y E S, (3.15) 

then G(y) and F(y) satisfy the integral equations 

l imfG(u)M(y,u;e)du = e x p ( - K y )  for y E S (3.16) 
e---~0 Js 

and 

f F(u)N(y,u)du e x p ( - K y )  y E (3.17) for 

It may be noted that the functions G(y) and F(y) in (3.16) and (3.17), respectively, must be 
real. 

The relations (3.7a) and (3.9a) are now recast as 

/~ F(y) dy = C, (3.18) e x p ( - K y )  
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and 

1 
G(y) exp(-Ky)  dy = 7r2K2C 

where 

1 - R  
C -  

iTrR sec a 

It is important to note that C is real. 

4. Upper and Lower Bounds for 'C' 

(3.19) 

(3.20) 

Following Evans and Morris [13], we define an inner product 

(f' g) = fs  f(Y)g(Y) dy. (4.1) 

Then obviously (f, g) is symmetric and linear. Also, the operator .M defined by 

(.h4 f)(y) = (M(y, u; ~), f (u)) (4.2) 

is linear, self-adjoint and positive semi-definite. 
As in Evans and Morris [13] for the solution of (3.16) we choose a one-term approximation 

a s  

G(y) ,~ algl (y) (4.3) 

where al is a constant and gl (Y) is to be chosen suitably. 
Then 

(91(y),exp(-Ky)) 
a! = (gl(Y), (.Mgl)(y)) " (4.4) 

Hence, from (3.19): 

l 
7r2K2C = (G(y), exp(-Ky))  _> (algl (y), exp(-Ky))  

by using the same argument as [13]. 
Thus 

C <_ Ao (4.5) 

where 

Ao fag'(y) Le--+o[lim/s {f0 c¢ klexp(-ekl)L(k'y)L(k'u)dk}gl(u)dUlk2 + K2 dy 
= (4.6) 

Again, if we define another inner product by 

{f,g} = f_ f(y)g(y)dy 
J S  

(4.7) 
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and another operator A/" by 

(jkf f)(y) = {N(y,u),f(u)}, (4.8) 

then it is obvious that {f, 9} is linear, symmetric and also the operator Af is linear, self-adjoint 
and positive semi-definite. 

If we choose a one-term approximation of F(y) as 

F(y) ,~ b1:1 (Y) (4.9) 

where bl is a constant and fl (Y) is to be chosen suitably, then 

bl = {fl (Y), e x p ( - K v ) }  
(v), 

Thus, by using (3.18) and the same argument as before, we find 

(4.10) 

C _> Bo (4.11) 

where 

[f3fl(y)exp(-Ky)dy] 2 
Bo = (4.12) oo 1 2 

foo kl(k2 + K2) [f~ fl(y)L(k'y)dy] 

Hence for the unknown real constant C, we find 

dk 

Bo _< C _< A0 (4.13) 

where A0 and B0 are given by (4.6) and (4.12) respectively. Thus upper and lower bounds for 
IRI and ITI are obtained as 

n, _< IRI <_ R2, Tl <_ ITI _ T2 (4.14) 

where 

1 1 
RI = (1 + 7r2-~ see2 t~ " I ' 2 ' A ~ ) ) t  R2 = (1 + 7r2B~ see2 ot,1/2 ; o ) (4.15) 

7rBo sec c~ 7rAo sec a 
TI = (1 +Tr2A2sec2ot) 1/2' T2 = (1 +Tr2B2sec2ot)l/2" (4.16) 

5. Functions gl(Y) andfl(y) 

The functions 91 (Y) and fl  (Y) are chosen as the explicit solutions of the appropriate integral 
equations for the problem of water wave diffraction by a thin, vertical plate sub-merged in 
deep water for the case of normal incidence and are given (cf. [ 17-19]) by: 

9I(Y) = AlA(y) ( A I ¢  0) (5.1) 

and 

fl(u) = BIX'(V) (B1 # 0) (5.2) 
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where 

fa y (d2 - u2)exp(Ku) 
A(y) = e x p ( - K y )  {(~- -~Tfa2-~- (b~- -~)} l /2  du, a < y < b 

and 

. f Y  (d  2 - u 2) exp(Ku) 
e x p ( - K y )  ]a { ( a - ~ " - - - - ~ ~ ) ( b ~  1/2 du, 0 < y < a, 

X(Y) = rY (d 2 - u 2) exp(Ku) 
- e x p ( - K y )  Jb ~ ----a-~(--~ ---b-~ j ig du' y > b 

with d 2 given by 

~a b (d 2 -- U 2) exp(Ku) 
{(~2 __ a i ) ( b  2 _ ~2)}1/2  d'tt = 0 

Substituting these in the expressions (4.6) and (4.12), Ao and Bo are obtained as 

Ao - 71.272 k2 q- K 2  {(u2  _ a2)(b2 _ u 2 ) } l / 2  du dk 

and 

(5.3) 

(5.4) 

( 5 . 5 )  

(5.6) 

- r io)  2 

B o = o o k Z [ f a b ( d Z _ u 2 )  sinku ]2 (5.7) 

fO kl(k2+K 2) ((u2_j)--~=-~-~}l/2du dk 

where 

f~ (d2-u2)exp(-Ku) 
ao = a {(a 2 - - u - - ~ - ( b 2 ~  u--~)} 1/2 d'tt, (5 .8)  

fb ~ (d2-u2)exp(-Ku) 
/30 = {(U2 -- a 2 - - ~ - -  b2-~-/2 du, (5.9) 

and 

fa 
b ( d2 - u2)exp(-Ku) 

'TO = {(U2 __ a2) (b2  _ u 2 ) } l / 2  du. (5.10) 

It is to be noted that in the numerator of A0 in (4.6), after 91 (u) is substituted from (5.1), the 
limit can be taken inside the k-integral so as to produce (5.6) ultimately. Again, it may be 
noted that for a = 0, 

olo --/30 
Ao --/30 = 

Ir~'o 

giving an exact value of C for a = 0, so that in this case R = i'7o/A, where A = ao -/3o- i7o, 

which agrees with the result obtained by Evans [9]. 
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Table 1. Lower and upper bounds for the reflection coefficient IRI for a/b = 0.5 

a = 1 5  ° a = 4 5  ° a = 7 5  ° a = 8 5  ° 

Kb Rl R2 Rl R2 Rl R2 Rl R2 

0.05 0.000442 0.000442 0.000324 0.000324 0.000118 0.000118 0.000040 0.000040 

0.4 0.016985 0.017043 0.012410 0.012454 0.004534 0.004551 0.001527 0.001532 
0.8 0.037454 0.037489 0.027281 0.027310 0.009937 0.009950 0.003344 0.003348 

1.6 0.045582 0.045591 0.032609 0.032653 0.011684 0.011724 0.003924 0.003938 

2.4 0.032469 0.032492 0.022468 0.022636 0.007843 0.007974 0.002625 0.002673 
3.0 0.021963 0.022009 0.014749 0.014993 0.005044 0.005215 0.001685 0.001746 

6. Numerical results 

The expressions(5.6) and (5.7) and hence the upper and lower bounds for IRI and ITI are 
evaluated numerically for various values of the parameters Kb, a/b and a. The various 
single integrals appearing here are evaluated by using a ninety-six-point Gauss quadrature 
formula. For the repeated integrals the inner integrals are evaluated by a ninety-six-point 
Gauss quadrature formula, while the outer integrals over (0, o0) are split into those over (0,1) 
and (1, ~ ) .  The integrals over (0,1) are computed by ninety-six-point Gauss quadrature. For 
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Fig. 2. Reflection coefficient for a/b = 0.05. 
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Fig. 3. Reflection coefficient for a/b = 0.1. 

the integrals over (0, cx~) the interval is replaced by (1, X)  where X is a large number chosen 
suitably so as to obtain the values of the integrals correct up to some desired number of 
decimal places by using Simpson's rule. Some representative results for the lower and upper 
bounds R1 and R2 for IRI are given in Table 1 for a/b = 0.5 and a = 15 °, 45 °, 75 ° , 85 °. 

It is observed from this table that the two bounds for ]R I coincide up to 3-5 decimal places 
for most cases and as such the true values of IRI are obtained correct up to 3-5 decimal places. 
The same is also true for the two bounds for 17" I , which are, however, not tabulated here. 

In Figures 2 and 3, IRI is depicted against the wave number Kb for a/b = 0.05 and 0.1, 
respectively, and a = 15 °, 45 °, 75 °, 85 °. Since the two bounds Rl and R2 of IRI for any 
value of Kb are very close, we have taken their average while drawing these figures. From 
Table 1 and from these figures it is observed that for fixed Kb and a/b, IRI decreases with 
increasing angle of incidence a. For a = 85 °, IRI becomes very small for any, a/b and Kb. 
As ot ~ 90 °, it is noted that the two bounds RI and R2, and hence IRI, tends to zero. This 
is obvious since the incident wave then almost grazes along the plate. Again, for fixed, a/b 
and or, IRI increases with the increase of Kb until a maximum is reached and then decreases 
to zero for further increase in Kb. This is also plausible since for large Kb the wavelength 
becomes small and the waves are confined within a thin layer near the free surface and almost 
total transmission then occurs since the presence of the plate is practically not felt by these 
waves. 
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7. Conclusion 

An approximate method based on a one-term Galerkin approximation to the solutions of 
certain integral equations has been used to obtain very accurate upper and lower bounds 
for the reflection and transmission coefficients in the problem of diffraction of an obliquely 
incident train of surface waves by a thin vertical plate submerged in deep water. For the case 
of normal incidence, the upper and lower bounds coincide, giving rise to the exact, known 
result. In our computer program for the numerical evaluation of the upper and lower bounds 
for a general value of c~ (the angle of incidence), if a is set equal to zero, the numerical values 
for the upper and lower bounds practically coincide. This gives a check of the correctness 
of out computer program. This method can also be applied to obtain approximate results for 
other problems involving barriers with a single gap or a number of gaps in deep water. 
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